Kinetics of the Multichannel Reaction of Methanethiyl Radical (CH₃S[•]) with ${}^{3}O_{2}^{\dagger}$

Li Zhu and Joseph W. Bozzelli*

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102

Received: October 28, 2005; In Final Form: April 11, 2006

The $CH_3S^{\bullet} + O_2$ reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH₃S[•]. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the $CH_3S^{\bullet} + O_2$ reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/ 6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH₃S[•] + $^{3}O_{2}$ reaction to the syn-CH₃SOO[•] adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH₃SOO[•] adduct include: CH₂S + HO₂, (TS6, E_a is 12.5 kcal/mol), CH₃ + SO₂ via CH₃SO₂ (TS2', E_a is 17.8) and CH₃SO + O (TS17, E_a is 24.7) where the activation energy is relative to the syn-CH₃SOO[•] stabilized adduct. The transition state (TS5) for formation of the CH₃SOO adduct from CH₃S $^{\bullet}$ + O₂ and the reverse dissociation of CH₃SOO to $CH_3S^{\bullet} + O_2$ is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH₃S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbonsulfur-oxygen systems, when they are feasible.

1. Introduction

Oxidation of small sulfur compounds resulting from algae production are considered a source of sulfate production in marine aerosols and cloud condensation nuclei and thus, may play a role in climate regulation.¹ The S–H bonds in alkanethiols CH₃SH and CH₃CH₂SH are 87.5 and 87.6 kcal/mol, respectively, and are weaker than the C–H bond which is 94.2 kcal/mol; thus the thiyl radical is a significant product in the initial reactions of thiols (also named mercaptans).² The CH₃S• + O₂ reaction is potentially important for both combustion and atmospheric chemistry as a pathway for the exothermic conversion (oxidation) of methanethiyl radical, CH₃S•, and as a model reaction for other alkyl thiyl radicals. The presence of sulfur in oxyhydrocarbon systems presents added complexity in studies on thermochemical and kinetic parameters because it can have several valence states.

There are a number of experimental studies in the literature on the reaction of CH₃S[•] with O₂;²⁻⁵ and there is one literature review by Tyndall and Ravishankara⁶ on this system. The reaction of CH₃S[•] with ³O₂ is reported to be slow with a rate constant to products (other than to the methane–thiyl–peroxy adduct, CH₃SOO[•]) measured by Tyndall and Ravishankara in 1989 as having an upper limit value of ~2.5 × 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ at 298 K.³ In 1992, they revisited the system and reported a *k* of ~4 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ where the rate specifically refers to reaction through the CH₃SOO[•] adduct to new products.² The rate constant of CH₃S + O₂ \rightarrow CH₃SOO was measured as (7–18) × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹. The well depth for CH₃S + O₂ \rightarrow CH₃SOO was determined at 11.7 \pm 0.9 kcal/mol at 298 K, with ΔS for the reaction reported to be -32.2 ± 2.8 and -36.8 ± 2.6 cal/mol·s from second and third law methods of analysis. The equilibrium constant for the reaction is also reported as (1.62 to 79.9) × 10⁻¹⁸ cm³ molecule⁻¹ (measurements at 216 to 258 K in 60–80 Torr of He).² This shallow well, 11.7 kcal/mol, combined with a small entropy gain from the adduct to the TS structure for dissociation to CH₃S[•] + O₂, results in an adduct lifetime on the order of a microsecond at room temperature.

There are two experimental studies on the dissociation of methylsulfonyl radical $(CH_3S^{\bullet}(=O)_2)$, where both implicate CH₃SOO as a product, one by Butkovskaya and Barnes⁷ and one by Frank and Turecek.8 (for brevity, CH₃S•(=O)₂ is abbreviated here and in the remaining text as CH₃SO₂). Butkovskaya and Barnes⁷ measured the decay of methyl methanethio-sulfonate (MMTS, CH₃S(=O)₂SCH₃), which resulted in $CH_3SO_2 + CH_3S^{\bullet}$ in both N_2 and O_2 at 1 atm. In O_2 the CH₃S[•] reacted to form CH₃SOO. They derived rate constants for $(CH_3SO_2 \rightarrow CH_3 + SO_2)$ of $0.4 \pm 0.2 \text{ s}^{-1}$, and for $(CH_3SOO$ \rightarrow CH₃ + SO₂) = 8 s⁻¹, and an equilibrium constant, k_{eq} (CH₃S $+ O_2 \rightarrow CH_3SOO) = 1.4 \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ at } 298 \text{ K}.$ Frank and Turecek⁸ studied the dissociation of CH₃SO₂ and methoxysulfinyl (CH3OSO[•] radical, including anti- and synisomers) and ions by variable-time neutralization-reionization mass spectrometry, combined with fast-beam laser photoexci-

[†] Part of the special issue "David M. Golden Festschrift".

^{*} Corresponding author. Telephone: (973) 596-5294. Fax: (973) 596-3586. E-mail: bozzelli@adm.njit.edu.

tation experiments. Their studies also included DFT (B3LYP/ 6-31+G(2d,p)) and ab initio calculations (G2(PMP2)), and RRKM kinetic analysis. They reported $\Delta H_{\rm f}^{\circ}_{298}$ for CH₃SO₂ and CH₃OSO• radicals as -50.4 ± 1 and -55.0 ± 1 kcal/mol, respectively. Transition states for CH₃SO₂ dissociation to CH₃ + SO₂ and isomerization to *anti*-CH₃OSO• were reported with barriers of 14.3 and 23.4 kcal/mol at the G2(PMP2) level, respectively. The rate constant of CH₃ addition to SO₂ was fitted as log A = 12.19 and $E_{\rm a} = 1.3$ kcal/mol.

The reaction of $CH_3S + O_2$ is also reported as an important submechanism to the detailed model development on photooxidation and combustion of dimethyl sulfide and dimethyl disulfide.⁹ The rate constants of 5.8×10^{-17} and 600 (both in cm^3 molecule⁻¹s⁻¹) for $CH_3S + O_2 + M \rightarrow CH_3SOO^{\bullet} + M$ and reverse $CH_3SOO^{\bullet} + M \rightarrow CH_3S + O_2 + M$ are in this mechanism.

In this study we present thermochemical properties of major species, adducts, TS structures and kinetics for the $CH_3S + O_2$ system. Results from computational studies at several levels are compared to evaluate reasonable calculation methods for thermochemistry and kinetic parameters on larger oxy-hydrocarbon-sulfur systems. Kinetic parameters, equilibrium constant, and CH_3S loss profiles are compared with the literature data.

2. Methods

The reactants, intermediates, products, and transition state structures resulting from the CH₃S[•] + ${}^{3}O_{2}$ association reaction are calculated at several density functional and composite ab initio levels using Gaussian 03. Computation levels include B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), and B3PW91/6-311++G(3df,2p). Zero point energies are corrected by 0.9806 (both B3LYP methods), 0.9608, 0.9759, and 0.9774 for MP2/6-31G(d,p), B3P86/6-31G(d), and B3PW91/6-311++G(3df,2p) methods, respectively. The CBS-QB3 and G3MP2 composite methods are utilized for improved energies and analysis. G2 and G3 are applied when the CBS-QB3 and G3MP2 do not agree.

The enthalpies of formation for stable species (non-TS's, Table 3 of the previous article¹⁰) are calculated using the total energies at B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), and CBS-QB3 levels with work reactions that are isodesmic in most cases. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. The use of a work reaction with similar bonding on both sides of a equation, results in a cancellation of calculation error and improves the accuracy for energy analysis. The reported enthalpy values can be compared with the known enthalpies of several molecules in the system to serve as a calibration on the thermochemistry and the PE diagram.

The energy of each transition state structure is calculated from the corresponding reactant plus the energy difference between the TS structure and the reactant (adduct). If the TS is closer in structure to the product, then the enthalpies of formation of the transition state species is calculated from the corresponding product plus the energy difference between TS and product.

Contributions to S_{298}° and $C_p^{\circ}(T)$ of each species and TS structure are calculated using the "SMCPS" program,¹¹ which incorporates the frequencies, moments of inertia, mass, symmetry, number of optical isomers, from the CBS-QB3 or G3MP2 Gaussian calculation. It also incorporates frequency corrections. Torsion frequencies are omitted in SMCPS, and the

"ROTATOR" program^{11–13} is used for contributions from internal rotations to S_{298}° and $C_p^{\circ}(T)$.

The rate constants for the elementary reactions are calculated from the computed frequencies, structures and energies using canonical transition state theory with rate k(T) fit to the three-parameter modified Arrhenius equation, $k = A \times T^n \times \exp(-E_a/RT)$, over the temperature range 237–2000 K.^{11,14} The calculation of the preexponential term $A \times T^n$ uses all vibration frequencies, but torsion frequencies are omitted. In place of the torsion frequency the internal rotor potentials are analyzed and their contributions to entropy and heat capacity are included.

Temperature and pressure dependent rate constants for reactions of the chemical activated CH₃SOO* and the stabilized CH₃SOO adduct were calculated with multichannel, multi-frequency QRRK theory for k(E) and master equation analysis for falloff.¹¹ Elementary rate constants for the individual reaction, preexponential factors and the energies were obtained from canonical transition state theory. The CHEMASTER¹¹ code is used with energy levels from a full set of 3N-6 vibration frequencies, but in a reduced form of three representative frequency sets, plus energy levels from one external rotor.

The CHEMKIN II program¹⁵ is used to integrate the kinetics for the $CH_3S + O_2$ mechanism; it incorporates thermodynamic properties and microscopic reversibility to determine the reverse rate constants, which are then included in the model. The reaction conditions are taken as the experimental conditions of Turnipseed et al.,² and the modeling results are compared with the experiment.

3. Results and Discussion

The potential energy diagram for the CH₃S radical with O₂ reaction system is illustrated in Figure 1. Values are standard enthalpy of formation at 298 K. The thermochemical properties for atoms, diatomics, HO₂, SO₂, CH₃, CH₃S, CH₂O, CH₃O, and ³SO, are from the literature. All other intermediates including CH₃SO₂ are from calculations with isodesmic work reactions.¹⁰ The values for the transition states are calculated from the difference in the enthalpies of formation of reactants and the corresponding barriers, except TS5 which is calculated from product, anti-CH₃SOO (using the reverse barrier height). Enthalpy values for transition states are at G3MP2 level except those marked with * or **, which are at the CBS-QB3 or G2 levels, respectively. The thermochemical properties are listed in Table 3 and some of the $\Delta H_{\rm f}^{\circ}_{298}$ data are derived in a previous study.¹⁰ The potential energy diagram in Figure 1 includes a number of paths that do not show importance to the forward reaction of the $CH_3S + O_2$ system; these paths have value in reaction systems such as $CH_3O + SO$, $CH_2O + HSO$ (or SOH), $CH_3 + SO_2$ and will be further discussed in future studies.

The association of CH₃S with O₂ forms an energized adduct, anti-CH₃SOO* (dihedral angle \angle CSOO = 179° at CBS-QB3 level) with 9.2 kcal/mol of energy; ΔH_{f^0298} of the anti-CH₃SOO adduct, 20.7 kcal/mol, is determined by reference to the syn-CH₃SOO.¹⁰ The energy of the transition state structure for the CH₃SOO adduct and is approximately 5.0 kcal/mol below the entrance channel of the reactants. We treat the CH₃S + O₂ reaction to TS5 as having no E_a and TS5 at the energy of the reactants. The reactant's energies for CH₃S are from literature, which is supported by work reaction calculation, and from the definition, $\Delta H_{f^{\circ}(298)}$, for ³O₂.

The CH₃SOO adducts (energized and stabilized) can isomerize via several processes; these include internal rotation about

Figure 1. Potential energy diagram at 298 K (in kcal/mol). All barriers are calculated at G3MP2 level, except those labeled with an asterisk are calculated in CBS-QB3 level. TS6 with two asterisks is from the G2 calculation. Energy of TS5 is treated as being at the energy of the $CH_3S + O_2$ reactants.

 CH_3S -OO, H atom transfer, rearrangement of the (S-O-O) moiety, and dissociation back to reactants.

The TS5 structure suggests that the CH_3SOO^* is formed in the *anti*-form, and the reaction path analysis indicates that H transfer reactions and HO₂ molecular elimination paths occur from the *syn*-form.

$$CH_3S + {}^{3}O_2 \leftarrow TS5 \rightarrow anti-CH_3SOO^* \leftrightarrow$$

syn-CH₃SOO* \rightarrow products

and

$$(anti-+syn-)$$
 CH₃SOO* + M \leftrightarrow

$$(anti-+syn-)$$
 CH₃SOO + M

The *anti*-CH₃SOO undergoes an internal rotation with a barrier of only 0.1 kcal/mol at 298 K to the *syn*-CH₃SOO (dihedral angle \angle CSOO = 0° at CBS-QB3 level). The *syn*-CH₃SOO is 0.5 kcal/mol more stable than the *anti*-form. The barriers to other isomers or products are all above the energy of the CH₃S + O₂ entrance channel.

There are three low-energy forward reaction channels of syn-CH₃SOO. The most important at atmospheric conditions is molecular elimination of HO₂ (I) with an E_a of 12.5 kcal/mol and a tight transition state ($A_{298} = \sim 4E+11$) at 298 K via TS6. The peroxy oxygen atom forms a bond with the H atom in a five member ring TS structure, the S-O bond cleaves and the C=S double bond is formed. The second low barrier forward reaction II, is isomerization via attack of the peroxy radical on the S atom (addition, formation of a three member SOO ring) and cleavage of the weak RO-O bond to form a much more stable CH₃SO₂ adduct ($\Delta H_{rxn} = -73.9$) with E_a of 17.8 kcal/ mol and a tight transition state ($A_{298} = \sim 5E+11$). The third important unimolecular reaction is CH₃SO-O bond cleavage to CH₃SO + O via TS17 (III) with E_a of 24.7 kcal/mol; but a somewhat less tight transition state ($A_{298} = \sim 7E+12$). This channel will be more important at elevated temperatures.

$$CH_3S + {}^{3}O_2 \leftrightarrow syn-CH_3SOO^* \leftrightarrow TS6 \rightarrow CH_2 = S + HO_2$$
 (I)

$$CH_3S + {}^{3}O_2 \leftrightarrow syn-CH_3SOO^* \leftrightarrow TS2' \rightarrow CH_3 + SO_2$$
 (II)

$$CH_3S + {}^{3}O_2 \leftrightarrow syn - CH_3SOO^* \leftrightarrow TS17 \rightarrow CH_3SO + O$$
 (III)

It is interesting to compare the thermochemistry of CH_3 radical with that of CH_3S in overall reactions with O_2 and NO to observe the significant difference in reaction energy resulting from the change in valence of sulfur. We note that CH_3SO exists in the $CH_3S^{\bullet}(=O)$ resonant form.

$$CH_3 + {}^{3}O_2 \leftrightarrow CH_3O + O \qquad \Delta H_{rxn} = +29.8 \text{ kcal/mol}$$

$$CH_3S + {}^{3}O_2 \leftrightarrow CH_3SO + O \qquad \Delta H_{rxn} = +10.7$$

$$CH_3 + NO_2 \leftrightarrow NO + CH_3O \qquad \Delta H_{rxn} = -16.4$$

$$CH_3S + NO_2 \leftrightarrow NO + CH_3SO \qquad \Delta H_{rxn} = -35.2$$

3.1. Comparison of Enthalpy and Reaction Barriers vs Level of Theory and Basis Set. Our previous study on thermochemistry of carbon-sulfur-oxygen species¹⁰ showed that use of larger basis sets with the B3LYP calculations and work reaction analysis resulted in improved accuracy. The B3LYP/ 6-311++G(3df,2p) level was, however, still not sufficiently accurate to be in agreement with the accepted literature or G3MP2 data for approximately 20 percent of the reactions. The B3PW91/6-311++G(3df,2p) calculation level showed similar accuracy to the B3LYP/6-311++G(3df,2p) and these were judged as the best in this DFT comparison. The CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p) calculations (with work reactions), were not as accurate as the best DFT level calculation sets. The B3P86/6-311G(2d,2p)//B3P86/6-31G(d) level performed in a manner similar to the B3LYP/6-311++G(d,p). Overall, we concluded that the results from the work reactions and these DFT methods were not consistently satisfactory or

TABLE 1: Comparison of E_a (Forward or Reverse) at Different Calculation Levels^{a,b}

	B3LYP I ^c	B3LYP II ^d	CCSD(T)/ 6-311G(d,p)// MP2/6-31G(d,p)	B3P86/ 6-311G(2d,2p)// B3P86/ 6-31G(d)	B3PW91/ 6-311++G(3df,2p)	CBS-QB3	G3MP2	G3MP2 (0 K, ref 16)	G2(PMP2) (0 K, ref 8)
$CH_3S + O_2 \rightarrow TS1$	20.6	20.3	29.3	26.2	20.3	24.3	25.3	11.2	
syn -CH ₃ SOO \rightarrow TS2'	30.6	22.8	33.6	27.1	23.2	17.8		18.6	
$CH_3SO_2 \rightarrow TS3$	39.9	45.0	47.8	45.5	47.4	48.1	46.2	49.4	23.4 ^g
$CH_3OSO \rightarrow TS4$	31.9	27.6	38.5	30.0	29.1	28.6	30.1	30.9	36.3 ^g
$TS5 \rightarrow syn-CH_3SOO^e$	4.8	7.0	8.4		8.3	6.6	4.7	8.3	
syn -CH ₃ SOO \rightarrow TS6 ^f	13.2	14.2	11.9	11.8	13.4	13.1	9.9		
$\dot{C}^{\bullet}H_2SOOH \rightarrow TS7$	-0.5	-0.7	3.4	-0.4	-2.0	-1.1	-0.7	1.0	
$C^{\bullet}H_2SOOH \rightarrow TS8$	3.6	8.8	7.8	7.3	8.8	7.0	13.8	13.4	
$CH_3SO_2 \rightarrow TS9$			13.0				13.4	14.4	14.3
$CH_3SO_2 \rightarrow TS10$	45.6	51.8	46.5	48.6	51.4	53.8	52.6		
$C^{\bullet}H_2SO_2H \rightarrow TS11$				32.2	34.2	36.8	25.3		
$CH_3SO_2 \rightarrow TS12$	54.1	56.9	57.5	53.7	55.4	56.2	57.0		
$C^{\bullet}H_2SO_2H \rightarrow TS13$	14.4	20.4	19.6	21.3	23.2	24.8			
$CH_2(OH)S^{\bullet}=O \rightarrow TS14$	53.8		54.5	55.4	53.5	52.3	52.2		
$CH_2(OH)S^{\bullet}=O \rightarrow TS15$	81.4	75.3	84.0	77.4	74.0	74.4			
syn -CH ₃ SOO \rightarrow TS16		35.3	37.6	34.5	34.3		38.4	39.6	
syn -CH ₃ SOO \rightarrow TS17							24.7		
$C^{\bullet}H_2SOOH \rightarrow TS18$	26.0	27.0	32.2	30.5	27.9	31.9			
$CH_3OSO \rightarrow TS19$						48.8			
$CH_3OSO \rightarrow TS20$							53.6		
anit-CH ₃ SOO → TS21						0.07			

^{*a*} Units in kcal/mol, at 298 K. ^{*b*} See Figure 1 for an illustration of the transition states. ^{*c*} B3LYP I = B3LYP/6-311++G(d,p). ^{*d*} B3LYP II = B3LYP/6-311++G(3df,2p). ^{*e*} TS5 is the transition state for CH₃S + $O_2 \rightarrow syn$ -CH₃SOO, The vales here are E_a for the reverse reaction to the TS5. ^{*f*} TS6 is calculated at 12.5 at G2 and 12.4 at G3 levels of calculation. ^{*g*} This is for *anti*-CH₃OSO, which is 2.2 kcal/mol higher in energy than the *syn*- form at G2(PMP2).

were too dependent on the work reaction. We observed that the two composite methods, CBS-QB3 and G3MP2 yielded the best results compared to experiment and these calculation methods are recommended for this carbon-sulfur-oxygen system.

Reaction barriers from three DFT methods (B3LYP, B3P86, and B3PW91) using several basis sets, along with two composite methods CBS-QB3 and G3MP2 are compared in Table 1 for most of the 21 transition state structures. Data on several reactions from studies by Frank and Turecek and by Wang et al. are also listed. Energy values in Table 1 are activation energies at 298 K calculated from the relative total energies between TS and reactants (except TS5, which is between TS and products). The following discussion addresses some of the data in Table 1.

There is reasonable agreement (within 2 kcal/mol) for the energies of activation between the CBS-QB3 and G3MP2 calculation methods, in 8 out of 11 reactions (see Table 1). Possible reasons for the varied results from the different calculation methods and basis sets include the following: (1) differences in geometry that arise from use of different methods and basis sets; (2) varied treatment of the multivalence complexity of the S atom by the methods (the S atom can have four different valence states); (3) improvements in the composite methods resulting from techniques to extend the basis function energies to those of a complete or a more complete basis set. For the density functional methods, the data in Table 1 show that the higher-level B3LYP and the B3PW91 have better agreement with the composite methods a majority of the time.

A 3.2 kcal/mol difference is observed between CBS-QB3 and G3MP2 calculations for TS6 (see Table 1), where TS6 represents HO₂ molecular elimination from the CH₃SOO• adduct with a low barrier. It is an important path because it controls the product set from unimolecular reaction of the CH₃SOO adduct at low temperatures and it may explain the reaction path observed in the low-temperature flow experiments of Turnipseed et al.² The CBS-QB3 and G3MP2 structure calculations result in different r65 and r51 atom distances in the TS6 transition state structure (see Table 2). The breaking r51 bond is 1.447

and 1.279 Å, and the forming r65 bond is 1.178 and 1.357 Å, at CBS-QB3 and G3MP2 levels, respectively. We performed higher-level calculations on this TS-structure at the G3 and G2 level because of the importance of this channel; these results show good agreement at 12.5 and 12.4 kcal/mol respectively, and are in moderate agreement with the CBS-QB3 data at 13.1 kcal/mol. We choose the G2 value for use in our kinetic analysis.

The difference in calculated values for TS11 by CBS-QB3 and G3MP2 is 11.2 kcal/mol; with values of 25.3 at G3MP2 and 36.8 at CBS-QB3. Here we observe that the r31 and r41 bond lengths and the \angle 412 plus \angle 541 bond angles in TS11 are significantly different at the two levels. The bond length of r31 is 1.531 and 1.496 Å, and r41 is 2.017 and 2.404 Å, at CBS-QB3 and G3MP2 levels, respectively. The bond angles of \angle 412 are 111 and 94°, and the \angle 541 are 108 and 94°, at CBS-QB3 and G3MP2 levels, respectively. We choose the CBS-QB3 value based on our evaluation that the reverse reaction, OH addition to the S, does not have a 11 kcal/mol barrier, and further note that reaction through TS11 is unimportant in this CH₃S + O₂ system.

One additional barrier where the CBS-QB3 and G3MP2 calculations result in different values is TS8, where the structures are also different at the two levels (Table 2). The activation energy to TS8 is 7.0 kcal/mol at CBS-QB3 vs 13.8 kcal/mol at G3MP2:

$C^{\bullet}H_2SOOH (TS8) \rightarrow CH_2S + HO_2$

The barrier height of TS8 is relatively unimportant in the forward direction, because C*H₂SOOH rapidly dissociates to lower energy products $CH_2SO + OH$ via TS7 with no barrier. It is also difficult for the initial CH_3SOO adduct to reach the C*H₂SOOH adduct because the conversion of CH_3SOO^{\bullet} to C*H₂SOOH has a barrier (TS16) of 38.4 kcal/mol.

There is a difference of 14.1 kcal/mol between our data and those of Wang et al.¹⁶ for the abstraction of a methyl H atom by O_2 , at the same G3MP2 level. We note that the TS structure

 TABLE 2: Geometries and (Imaginary) Vibrational Frequencies of Intermediates and TS^{a-c}

1			D 11 1		2	D 1 1		D		
			Bond length	Ľ		Bond angle		D	inedral angle	
	ATT 0 0 0		(Angstrom)	Ş		(degree)			(degree)	
antı-	CH ₃ SOO	R21	1.093			13.7				
		R31	1.090	17520	Z312	109	0.07			
	S(5)	R41	1.090	35	Z412	109	11.11	∠4123	-122	S ere s
112		R51	1.804		∠512	105		∠5123	119	-
(C(1))	0(7)	R65	1.831		∠651	94		∠6512	178	
(H(4) (U(2))	0(6)	R 76	1.282	22	∠765	115		Z7651	179	2 <u>44</u> 5
			63	- 222						
syn-	CH ₃ SOO	R21	1.090	22						
	0(6)	R31	1.089		Z312	112				
	HAD	R41	1.103	500	∠412	109		∠4123	-120	(Second
		R51	1.787		∠512	111		∠5123	125	200
		R65	1.921		Z651	98	÷	Z6512	117	
3	H(2)	R 76	1.261		Z765	117		Z7651	0	
	(H(3))		126							
	CH ₃ SO ₂ 0(6)	R21	1.088	1.089						
H(3)	A	R31	1.090	1.092	∠312	111	111			
- 16	A	R41	1.088	1.089	∠412	112	112	∠4123	-126	-124
H(4) C(1)	S(5)	R51	1.836	1.809	∠512	108	108	Z5123	116	117
1	0(7)	R65	1.466	1.481	∠651	107	107	∠6512	175	174
		R75	1.466	1.481	∠751	107	107	∠7512	-54	-53
H(2)			152	197						
	CH ₃ OSO	R21	1.089	1.088						
(H(4))		R31	1.091	1.090	∠312	110	111			
T		R41	1.094	1.092	∠412	110	110	∠4123	-121	-121
H(2) (C(1)	S(6)	R51	1.442	1.446	Z512	106	105	Z5123	120	119
1	A	R65	1.662	1.657	∠651	118	115	Z6512	-169	-176
H(3)	0(7)	R 76	1.482	1.483	Z765	111	112	∠7651	31	13
			65	90	00004			174 - 194 1		
	C.H ₂ SOOH	R21	1.082	1.073						
	H(7)	R31	1.082	1.073	∠312	121	121			
	O(6)	R41	1.679	1.725	∠412	118	118	∠4123	-180	167
H(2)		R54	1.691	1.655	∠541	104	101	∠5412	147	156
CII	S(4)	R65	1.487	1.399	Z654	112	112	Z6541	-79	-79
	0(5)	R76	0.968	0.951	∠765	100	102	Z7654	-101	-101
H(3)	-	0	121	132						
	C.H ₂ SO ₂ H (O(5)									
H(3)	T	R21	1.083	1.083						
		R31	1.084	1.083	Z312	123	121		1017	
		R41	1.755	1.756	∠412	119	119	∠4123	-170	-165
	C(1)	R54	1.473	1.487	∠541	105	106	∠5412	168	-169
1	H(7)	R64	1.692	1.681	∠641	98	96	∠6412	-78	-55
H(2	2) O(6)	R 76	0.971	0.983	Z764	108	108	Z7641	-59	-62
			125	132						
	CH ₂ OHS.=O	R21	1.092	1.100						
	-	R31	1.099	1.093	Z312	110	110			
	O(6) O(5)) R41	1.873	1.844	Z412	108	107	∠4123	-115	-118
	T I	R54	1.521	1.497	∠541	101	101	∠5412	-149	-93
		R61	1.387	1.392	∠612	110	113	∠6123	126	123
н	(37 C(1) S(4)	R 76	0.972	0.986	∠761	107	105	Z7612	153	85
			92	82						
	(1)(2)									

		Bond length			Bond angle			Dihedral angle		
		(Angstrom))		(degree)			(degree)		
TS1	R21	1.680	1.674							
0(7) 40(6)	R31	1.094	1.095	∠312	119	120				
-	R41	1.092	1.091	∠412	119	119	∠4123	-148	-150	
H(5)	R51	1.334	1.356	∠512	105	105	∠5123	103	99	
	R65	1.252	1.208	∠651	170	161	∠6512	-171	-155	
H(4) C(1)	R 76	1.250	1.247	Z765	113	110	∠7651	30	26	
H(3)		i2102	i3706	97			Contra Norther			
TS2' H(3)	R21	1.089								
	R31	1.091		∠312	111	10				
H(1-C(1) -S(5)	R41	1.092		∠412	111	+++	∠4123	-123	ا نىپ -	
10(6)	R51	1.809		Z512	106	1000	∠5123	120	(22)	
Ha	R65	1.547		∠651	104		∠6512	-43		
	R 76	1.755	and i	∠765	75		Z7651	90	8.5169	
0(7)		<i>i</i> 832	(595 0)							
TS3	R21	1.083	1.088							
(H(2)) O(7)	R31	1.085	1.088	∠312	116	111				
	R41	1.081	1.092	∠412	115	113	∠4123	-137	-124	
H(3)= C(1)	R51	2.313	2.060	∠512	94	98	∠5123	92	101	
	R65	1.582	1.585	∠651	57	58	∠6512	114	130	
(H(4)	R75	1.465	1.482	Z751	130	116	Z7512	20	24	
		<i>i</i> 1004	i139	10-00-000			C1-040519022			
TS3	R21	1.082								
(Frank and Turecek) ⁸	R31	1.082		<i>Z</i> 312	120					
B3LYP/6-31+G(2d,p)	R41	1.081		Z412	119					
	R51	2.350		Z512	88					
	R65	1.496		<i>∠</i> 651	35					
	R75	1.480		2751	104					
		i251								
TS4	R21	1.080	1.080							
- Y	R31	1.080	1.081	∠312	119	118				
H(2)	R41	1.079	1.079	∠412	119	118	∠4123	-158	-153	
S(6)	R51	2.152	2.055	Z512	98	98	∠5123	103	106	
	R65	1.488	1.457	Z651	122	124	Z6512	-50	-63	
	R 76	1.461	1.448	2765	117	120	Z7651	75	78	
— H(3)		<i>i</i> 403	i470		4					
185			O(6)					D(7)		
		H(4)		0.0				O(6)		
		T				(+(4)	Cloy		
	н	(2)=C(1)	-				I			
			S(5)		Ĥ		(1)			
		H(3)	V		8		S(5	1		
	R21	1.090	1.090			H(3				
	R31	1.090	1.090	∠312	111	111	2			
	R41	1.095	1.106	∠412	108	108	∠4123	-119	-119	
	R51	1.808	1.774	∠512	111	112	∠5123	124	125	
	R65	2.314	2.032	∠651	90	94	Z6512	118	117	
	R76	1.214	1.219	∠765	120	117	Z7651	-180	0	
-		<i>i</i> 115	i776							

		Bond length	1		Bond angle		D	hedral angle	
		(Angstrom))		(degree)			(degree)	
TS6 (S(2)	R21	1.660	1.678	632507	7252524	-			
I	R31	1.090	1.088	Z312	120	117			
l	R41	1.090	1.088	Z412	120	117	Z4123	-155	-143
	R51	1.447	1.279	Z512	93	95	Z5123	103	109
(C(1))	O(6) R65	1.178	1.357	2651	155	146	∠6512	0	(
H(4)	R76	1.265	1.262	∠765	102	97	∠7651	0	(
		i990	i3596						
TS7	R21	1.676	1.662	100000000000000000000000000000000000000					
	O(4) R31	1.618	1.540	∠312	106	108			
-	R43	1.595	1.652	Z431	112	113	∠4312	-83	-8-
S(1)	R54	0.968	0.976	∠543	96	95	∠5431	-116	-12
C(2)	R62	1.082	1.081	∠621	118	118	∠6213	158	16
(H(7)	R72	1.082	1.081	∠721	120	121	∠7213	-22	-1
		i458	i971						
TS8			016					H(Z)	
								0(6)	
			(H(7)	0(5)				
								0(5)	
		H(3) -		-	156				<i>i</i> 619
		H(3) = (1)	S(4)					
	D21	1.095	1 097	~			H(3)		
	R21 D21	1.083	1.087	(212	110	116	H(2)	5(4)	
	RJ1 D41	1.084	1.087	2312	119	110	4102	174	17
	R41	1.629	1.622	2412	120	122	24123	-1/4	1/0
	R34	1.920	2.074	2541	108	105	25412	131	-10
	K05	1.413	1.3/2	2654	111	114	26541	-0	-9
T00 -	R/0	0.908	0.980	2/03	102	105	Z/034	107	9
1 59 H(4)		17.20 1-1-1	1.083	(210		117			
T	O(6) K31		1.084	2312		11/			
	(S(5)) R41	(1.083	Z412	10000	118	Z4123	terro la	-14
C(1)			2.361	2512	2 5 5	101	Z5123	100003	10
H(2)	R65		1.472	2651	3 55 4	100	Z6512	1	17
H(3)	V R75		1.472	2751		100	Z7512	(金田)	-5
E 010		1.007	1315						
1810	(O(7)) R21	1.085	1.086	201000000000000000000000000000000000000					
H(4)	T R31	1.087	1.089	Z312	121	120	10.01012100	1.0	1312
	R41	1.344	1.315	Z412	109	108	Z4123	-126	-12
	R51	1.811	1.789	2512	117	117	∠5123	144	14
H(2)C(1)	S(5) R65	1.465	1.481	Z651	108	108	Z6512	-151	-15
(H(3))	Q(6) R74	1.239	1.251	Z741	114	110	∠7412	-108	-10
		<i>i</i> 1951	i2971						
1811	(5) R21	1.613	1.601						
	O(4) R31	1.531	1.496	∠312	108	115			
	R41	2.017	2.404	∠412	111	94	Z4123	-83	-12
	R54	0.972	0.981	2541	108	94	∠5412	-163	-16
H(6	S(1) R62	1.083	1.083	∠621	117	117	∠6213	-166	17
G(2)	R72	1.082	1.084	∠721	121	122	∠7213	20	-
	O(3)	1547	i442						

		Bond length			Bond angle		Dihedral angle		
		(Angstrom))		(degree)			(degree)	
TS12	R21	1.089	1.089		6			<i></i>	
H(2)	R31	1.090	1.090	Z312	113	114			
	R41	1.476	1.494	∠412	131	138	∠4123	-152	-145
(C(1))====(S(5))	R51	1.789	1.734	∠512	114	115	∠5123	127	131
HIS	R64	1.253	1.267	∠641	122	119	∠6412	-109	-115
(H(4)	R75	1.469	1.459	Z751	115	118	Z7512	12	17
		i2449	i2038						
TS13 H(7)	R21	1.081	1555						
	R31	1.083	1 3.00 5	∠312	121	8 .7.7 8			
0(6)	R41	1.648		∠412	117	()	∠4123	-175	
27	R54	1.477		∠541	112		∠5412	176	
H(3)	R61	2.251	4 <u>040</u> 2	∠612	92	17 <u>171</u> 7	∠6123	113	<u>3645</u> 5
(C(1)) S(4)	R76	0.972	1000	Z761	94	(57.75)	∠7612	-152	155
IH(2)		i277	i2971						
TS14									
O(6)	R21	1.082	1.082						
H(7)	R31	1.084	1.084	Z312	121	120			101020001
	R41	1.620	1.610	Z412	123	122	∠4123	-180	-172
	R54	1.485	1.509	Z541	114	112	∠5412	-4	-11
<u> </u>	R61	2.564	2.297	Z612	71	77	∠6123	107	101
H(2)	R 76	0.977	0.983	Z761	86	89	Z7612	82	76
TOLE	DAT	113/	1265						
1815 (H(7))	R21	1.090	6 7-7 8	1010	116				
	RJI D41	1.090	(1 111 5	2312	116		11100	100	
0(6)	R41	1.802		Z412	119	()	Z4123	139	
H(2)-	K54	1.465		2541	112		25412	-14/	
S(4)	R01	1.412		2012	110		26123	-142	17.7
(H(3)) (O(5))	K/0	1.740 ;700	(1 157 1)	Z/01	115	194431	Z/012	62	
TS16*	R21	1.085	1.088						
O(6)	R31	1 090	1 090	/312	116	115			
O(5)	R41	1 753	1 783	/412	114	116	/4123	-140	-140
(H(7))	R54	1.773	1.730	/541	88	87	/5412	-153	-148
	R65	1.400	1.404	2654	103	103	26541	51	49
HIGH C(1)	R76	1.257	1.244	2765	94	95	Z7654	-39	-42
5(4)		i2759	i3702						
	* = he	ere use B3LY	P/6-311-	++G(2d,	p) geom. An	d freq.	, CBS-QB	3 is not found	d b
TS17 00	R21		1.091						
	R31		1.090	∠312	(194)	110			
	R41	100	1.093	Z412	7/ <u>2011</u> 7	110	∠4123	192	-121
	R51		1.797	Z512		109	Z5123		121
H(3)C(1)	R65		1.534	Z651	1000	104	Z6512	100	-65
HA	R 76		1.778	Z765)(111)	114	Z7651		85
T010	DO1	1 709	1838						
1518 H(7)	R21 P32	1.708		/221	70				
0(6)	R32	1.098	12 4 - 1 15 15	2321	119	er mm te Ligeante	//102	70	57200
100	R41	1.001		2412	10		/5122	-/0	
0(3)	P62	1.083	(555)	2512	121	0000944	23123	104	100000
	R05	1.790	8 88 8	2032	114	80000	20321	142	
H(4)	N/0	0.909		2/03	92	2()	2/032	179	
C(1) S(2) H(5)		11/2							

		Bond length (Angstrom)		Bond angle (degree)			Dihedral angle (degree)		
TS19	0								
S(3)	R21	1.283							
	R32	1.284		Z321	103				
l a	R43	1.538		∠432	86		∠4321	0	
<u> </u>	R54	1.244		∠543	105	22	∠5432	0	<u>800</u> 4
Ç(1) (0(4)	R61	1.102		∠612	118		∠6123	-105	
H(7) H(6) (H(5)	R71	1.102	75	∠712	118	0.555	∠7123	105	5573
		i1275	1.77						
TS20 0(4)	-								
	R21		1.396						
H(5) S(3)	R32	R55 5	1.732	∠321		100			
н(7)	R43		1.481	∠432		114	∠4321		-96
	R53		1.529	Z532		76	∠5321		10
C(1)	R61		1.086	∠612		114	Z6123		-126
	R71	22	1.088	Z712		115	∠7123	22	91
			<i>i</i> 2314						
TS21									
	R21	1.090							
H(2)	R31	1.094	22	∠312	109	7223			
	R41	1.089		∠412	111		∠4123	-121	
(C(1)) S(5) O(7)	R51	1.807		∠512	111		Z5123	115	55
s 🛣 🔍 🔍	R65	1.824		2651	96		∠6512	56	
H(4)	R76	1.290		∠765	115		Z7651	112	
		<i>i</i> 65		N 7215.7			878 KR		

^{*a*} First structure = CBS-QB3 level; second structure = G3MP2 when they are different. ^{*b*} First column = CBS-QB3 parameters; second column = G3MP2 parameters. ^{*c*} First imaginary frequency = B3LYP in CBS-QB3, second imaginary frequency = HF in G3MP2.

for abstraction reaction in Wang et al. is similar to our TS6 (HO₂ molecular elimination from CH₃SOO) rather than our TS1.¹⁰

There are three reaction barriers in this system that have been previously reported by Frank and Turecek⁸ in their study on the $CH_3 + SO_2$ reaction surface. We include their data, which is reported to be at a G2(PMP2) calculation level, in Table 1 for comparison.

One reaction is $CH_3SO_2 \rightarrow CH_3 + SO_2$ (TS9 in this study), where the barrier by Frank and Turecek is 14.3 kcal/mol, and the value in this work is 13.4 kcal/mol at G3MP2 level. Wang et al.¹⁶ also reported this value as 14.4 kcal/mol at G3MP2 level. The well depth of $CH_3 + SO_2$ to CH_3SO_2 is 14.1 kcal/mol at G2(PMP2) level by Frank and Turecek, but our isodesmic reaction analysis on CH_3SO_2 radical places this well depth at 17.9 kcal/mol. We feel these differences may be attributed to differences in reference species. We reference the TS to the adduct energy, which is obtained from work reactions. Frank and Turecek may be have referenced the energy to values calculated for the reactants. The Turecek research group has a strong publication record for both enthalpy and kinetic barriers and we regard their work highly.

A second reaction in the Frank and Turecek study is $CH_3SO_2 \rightarrow CH_3OSO$ (TS3 in this study), and there is a 25 kcal/mol difference between our E_a (48.1 at CBS-QB3 level) and their value (23.4 kcal/mol). Wang et al.¹⁶ also report this TST with a value of 49.4 kcal/mol. The published TS structure by Frank and Turecek (reported as at B3LYP/6-31+G(2d,p) level in their SM) and ours (at B3LYP/6-311G(2d,d,p) in CBS-QB3) are compared in Table 2 (see TS3 section). There are significant differences in the r(C-S), and one of the r(O-S) bond lengths

and the \angle CSO angle. We ran a TS calculation on the geometry of Frank and Turecek using their B3LYP/6-31+G(2d,p) method. The output geometry was similar to the initial; but the IRC analysis suggested the TS may be for CH₃OSO \rightarrow CH₃ + SO₂ (TS4 in this study) rather than for CH₃OSO \rightarrow CH₃SO₂ (TS3). We note that our barrier for the CH₃OSO \rightarrow CH₃ + SO₂ reaction (TS4) is 28.6 kcal/mol at CBS-QB3 and 30.1 kcal/mol at G3MP2. The E_a for TS4 is also reported as 30.9 kcal/mol by Wang et al. These values are more similar to the Frank and Turecek data; but still several kilocalories per mole higher than their E_a of 23.4. We will analyze this further in future work on the CH₃ + SO₂ reaction system.

Frank and Turecek also calculated the barrier for CH₃OSO \rightarrow CH₃ + SO₂ (TS4 in this study) and reported the E_a at the G2(PMP2) level, is 36.6 kcal/mol, which is 6 to 8 kcal/mol higher than our CBS-QB3 and G3MP2 results. We have recalculated this TST with their reported B3 geometry and confirm the structure and path analysis are in agreement. The difference in energy may result from reference of the TS energy to the CH₃SO₂ and CH₃OSO adducts in this study, i.e., the work reaction analysis for the ΔH_f values, vs reference of the TS energy to the calculated energy of the CH₃ + SO₂ reactants by Frank and Turecek.

3.2. Structures of TS and IRC Calculations. The geometries and the imaginary frequencies of the transition state structures from the CBS-QB3 or G3MP2 calculations are listed in Table 2; structures for the two forms of the initial adduct CH₃SOO and the intermediates are also included. The geometry and frequencies were calculated in the CBS-QB3 method as CBSB7 or B3LYP/6-311G(2d,d,p). The method for geometry and frequency calculation in G3MP2 is MP2(Full)/6-31G(d) and HF/

TABLE 3: 1	Ideal Ga	s-Phase	Thermochemical	Properties ^a
-------------------	----------	---------	----------------	--------------------------------

						($C_p^{\circ}(T)$				
species	$\Delta H_{f}^{\circ}{}_{298}$	S°_{298}	300 K	400 K	500 K	600 K	800 K	1000 K	1500 K	2000 K	ref
Н	52.10	27.36	4.97	4.97	4.97	4.97	4.97	4.97	4.97	4.97	JANAF ¹⁷
0	59.58	38.47	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	JANAF ¹⁷
	0.0	49.01	6.97	7.24	7.48	7.69	8.03	8.30	8.75	8.89	JANAF ¹⁷ IDI 18
HO	0.09 3 5	43.88 54.70	7.17 8.42	7.08	9.41	9.86	10.67	11 33	12 39	0.50 12.96	JPL ¹⁰ IANAF ¹⁷
SO	1.2	53.08	7.23	7.56	7.85	8.09	8.39	8.57	8.76	8.84	b.c
CH ₃	35.2	46.30	9.21	10.02	10.79	11.52	12.86	14.02	16.15	17.41	JANAF ¹⁷
SO ₂	-70.9	59.30	9.53	10.39	11.13	11.72	12.53	13.02	13.63	13.92	JANAF ¹⁷
CH ₂ S	28.3	55.14	9.06	10.31	11.48	12.47	14.04	15.22	17.12	18.11	<i>b,c</i>
CH ₃ O	2.2	62.03	13.67	16.18	12.24	20.11	22.87	24.79	20.34	21.51	THERM ^{19,20}
CH ₃ S	29.9	57.61	10.71	12.48	14.03	15.35	17.49	19.15	21.86	23.31	b,c
CH_2SO	-10.3	61.12	12.34	14.55	16.28	17.60	19.50	20.83	22.88	23.94	b,c
CH ₂ O	-26.0	50.90	7.91	9.42	10.69	11.74	13.37	14.51	16.22	18.14	21
SOH	-1.1	57.44	8.85	9.54	10.09	10.52	11.13	11.57	12.38	12.88	c,e
CVC-(CH2OS)	-7.5 7.6	57.74 60.28	0.00 11.18	9.39	15.05	16.01	11.47	20.44	22.72	23.88	b,c
$cyc-(CH_2OS)=O$	-39.3	66.75	14.99	17.81	20.08	21.85	24.36	26.05	28.51	29.74	<i>b</i> , <i>c</i>
CH ₃ SO		62.47	12.17	14.44	16.43	18.08	20.65	22.55	25.54	27.10	С
	10.05	5.40	1.49	1.32	1.21	1.15	1.09	1.06	1.02	1.01	IR 1
anti CU SOO	-18.95	67.87	13.66	15.76	17.64	19.23	21.74	23.61	26.56	28.11	total, b
иш-Сп3500		5.61	14.74	17.51	19.52	21.55	24.13	1.02	29.50	1.00	C IR 1
		5.34	3.42	3.07	2.58	2.19	1.70	1.45	1.19	1.10	IR 2
	20.71	78.66	19.43	21.54	23.21	24.61	26.89	28.66	31.49	33.07	total
syn-CH ₃ SOO		67.17	14.56	17.17	19.41	21.27	24.11	26.19	29.37	30.99	С
		5.61	1.27	1.16	1.11	1.07	1.04	1.02	1.01	1.00	IR I
	20.16	5.54 78.12	5.42 19.25	21.40	2.38	2.19	26.85	28.66	31.56	33.09	total <i>b</i>
CH ₃ SO ₂	20.10	67.01	15.44	18.38	20.85	22.85	25.83	27.95	31.20	32.88	C
		4.83	2.09	1.90	1.71	1.55	1.35	1.24	1.11	1.06	IR 1
a a a	-53.65	71.84	17.53	20.28	22.56	24.40	27.18	29.19	32.32	33.94	total, b
$C^{\bullet}H_2SO_2H$		68.48	16.76	19.57	21.63	23.15	25.32	26.9	29.52	30.99	C ID 1
		4.48	1.85 2.40	2 33	2 23	1.43 2.13	1.28	1.19	1.09	1.05	IR 1 IR 2
	-27.98	75.48	21.01	23.60	25.41	26.71	28.53	29.85	32.07	33.34	total, b
CH ₃ OSO		66.03	13.37	15.97	18.33	20.34	23.44	25.69	29.10	30.83	С
		5.67	1.16	1.09	1.06	1.04	1.02	1.01	1.00	1.00	IR 1
	-54.91	5.83	1.83	1.98	2.02	1.97	1.79	1.62	1.34	1.21	IR 2
C•H2SOOH	54.01	67.86	15.50	18.04	19 97	23.33	20.25	26.52	27 55	29.01	
011200011		3.55	2.39	2.24	2.08	1.95	1.74	1.59	1.35	1.23	IR 1
		4.33	3.78	3.87	3.56	3.15	2.45	2.00	1.46	1.26	IR 2
	22.04	3.41	1.84	1.76	1.69	1.63	1.52	1.43	1.27	1.18	IR 3
	23.04	79.15	23.53	25.96	27.30	28.11	29.17	30.00	31.64	32.68	total, b
$C \Pi_2(0\Pi) S = 0$		2.35	1.78	2.14	2.31	20.79	23.73	23.82	29.03	1.37	IR 1
		5.16	2.70	2.79	2.71	2.54	2.14	1.84	1.42	1.24	IR 2
	-54.03	75.14	17.96	21.29	23.84	25.68	28.10	29.67	32.07	33.35	total, b
CH ₃ SCH ₃		55.30	13.61	17.18	20.50	23.39	28.05	31.63	37.38	40.41	е
		4.91	2.02	1.80	1.01	1.47	1.29	1.20	1.09	1.05	e
	-8.94	65.13	17.65	20.79	23.73	26.33	30.64	34.02	39.56	42.51	e
CH ₃ SSCH ₃		70.67	18.73	22.69	26.20	29.18	33.92	37.52	43.29	46.33	е
		5.24	1.77	1.54	1.38	1.28	1.17	1.11	1.05	1.02	е
	570	5.24	1.77	1.54	1.38	1.28	1.17	1.11	1.05	1.02	е
TS1	-5.70	81.15 79.54	18.00	20.70	28.90	31.74 24.92	30.23 27.69	39.74 29.57	45.58	48.57	e b.c
TS2	55.2	68.48	15.66	18.13	20.22	21.92	24.54	26.46	29.47	31.04	<i>b</i> ,c
		4.83	2.09	1.90	1.71	1.55	1.35	1.24	1.11	1.06	IR 1
	38.0	73.31	17.75	20.03	21.93	23.47	25.89	27.70	30.58	73.31	total, b
TS3	-7.5	71.92	17.36	19.96	22.12	23.86	26.47	28.37	31.37	32.96	b,c
154		08.31 5.67	15.30	17.65	19.48	20.94	23.16	24.85	27.58	29.08	IR 1
		5.83	1.83	1.98	2.02	1.97	1.02	1.62	1.34	1.00	IR 2
	-24.7	79.81	18.35	20.72	22.56	23.95	25.97	27.46	29.92	29.92	total, b
TS5		68.41	13.59	15.74	17.72	19.43	22.15	24.18	27.35	28.98	
		5.61	1.27	1.16	1.11	1.07	1.04	1.02	1.01	1.00	IR 1
	24.0	/.20	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.99	IK 2 total <i>b</i> c
TS6	32.7	71.25	16.64	19.68	22.22	24.26	27.23	29.20	32.10	33.48	b,c
TS7	22.3	74.84	19.75	22.33	24.19	25.58	27.58	29.06	31.57	33.01	b,c

TABLE 3 (Continued)
-----------	------------

						C	$p^{\circ}(I)$				
species	$\Delta H_{f}^{\circ}{}_{298}$	S°_{298}	300 K	400 K	500 K	600 K	800 K	1000 K	1500 K	2000 K	ref
TS8		75.61	18.25	20.83	22.89	24.49	26.85	28.57	31.37	32.91	
		3.55	2.39	2.24	2.08	1.95	1.74	1.59	1.35	1.23	IR 1
	36.8	79.16	20.64	23.07	24.97	26.44	28.59	30.16	32.72	34.14	total, b
TS9		70.01	16.28	18.67	20.67	22.32	24.86	26.74	29.67	31.18	d
		4.83	2.09	1.90	1.71	1.55	1.35	1.24	1.11	1.06	IR 1
	-40.3	74.84	18.37	20.57	22.38	23.87	26.21	27.98	30.78	32.24	total
TS10	-1.1	69.89	17.23	20.51	23.03	24.96	27.69	29.54	32.22	33.54	b,c
TS11		70.22	16.82	19.74	21.82	23.33	25.46	27.00	29.57	31.02	b,c
		2.52	2.40	2.33	2.23	2.13	1.93	1.75	1.46	1.30	IR 1
	-2.7	72.74	19.22	22.07	24.05	25.46	27.39	28.75	31.03	32.32	total
TS12	3.3	70.50	17.37	20.51	22.97	24.88	27.62	29.48	32.20	33.53	b,c
TS13	-3.2	73.94	18.68	21.51	23.58	25.12	27.30	28.87	31.49	32.97	b,c
TS14		71.73	16.88	19.63	21.66	23.18	25.34	26.92	29.54	31.01	
		2.35	1.78	2.14	2.31	2.35	2.23	2.02	1.60	1.37	IR 1
	-1.8	74.08	18.66	21.77	23.97	25.53	27.57	28.94	31.14	32.38	total, b
TS15	20.4	70.88	18.73	21.65	23.96	25.75	28.29	30.00	32.48	33.71	b,c
TS16	58.6	70.13	17.10	20.42	22.98	24.94	27.71	29.57	32.25	33.57	b,c
TS17		72.60	17.92	20.4	22.47	24.18	26.82	28.76	31.73	33.23	d
		5.61	1.27	1.16	1.11	1.07	1.04	1.02	1.01	1.00	IR 1
	-18.95	78.21	19.19	21.56	23.58	25.25	27.86	29.78	32.74	34.23	total, ²²
TS18		73.09	17.47	20.08	22.01	23.44	25.5	27.01	29.56	31.01	С
		3.41	1.84	1.76	1.69	1.63	1.52	1.43	1.27	1.18	IR 1
	54.9	76.50	19.31	21.84	23.70	25.07	27.02	28.44	30.83	32.19	total, b
TS19	-6.0	70.19	16.07	19.06	21.64	23.77	26.92	29.06	32.07	33.49	С
TS20	-1.6	71.03	16.76	19.82	22.35	24.37	27.29	29.27	32.10	33.47	С
TS21		67.52	14.79	17.38	19.60	21.42	24.21	26.23	29.37	30.99	
		5.61	1.27	1.16	1.11	1.07	1.04	1.02	1.01	1.00	IR 1
	20.78	73.13	16.06	18.54	20.71	22.49	25.25	27.25	30.38	32.99	total

a 0/m

 ${}^{a}\Delta H_{f}^{\circ}{}_{298}$ in kcal/mol, $S^{\circ}{}_{298}$ and $C_{p}^{\circ}(T)$ in cal/mol·K; temperature range 300–2000 K. ${}^{b}\Delta H_{f}^{\circ}{}_{298}$ is from ref 10. c Calculated in this study from B3LYP frequencies using the "SMCPS" program. d Calculated in this study from HF/6-31G(d) frequencies using the "SMCPS" program. e Unpublished work, $\Delta H_{f}^{\circ}{}_{298}$ is the CBS-QB3 result with the use of isodesmic reactions. IR = internal rotor contribution.

6-31G(d), respectively. The IRC analysis for the TS2' to TS5 and TS7 to TS21 atom displacement is provided in Supporting Information Figures 1–19. IRC calculations for TS1 (CH₃S + $O_2 \rightarrow CH_2S + HO_2$) and TS6 (CH₃SOO $\rightarrow CH_2S + HO_2$) were reported previously.¹⁰

3.3. $\Delta H_{\rm f}^{o}_{298}$ (by Isodesmic Reactions), S°_{298} , and $C_{p}^{\circ}(T)$ of All Species. Thermochemical parameters are listed in Table 3. Comparisons of calculated enthalpies of formation with the available literature on a number of compounds are illustrated in our previous paper.¹⁰

3.4. Elementary Reaction Rate Constants. As noted above we find the energy of the transition state structure for the CH₃S + O₂ association (TS5) to be ~ 5.0 kcal/mol below the entrance channel of the reactants and note that this energy is calculated relative to the CH₃SOO adduct. We treat the CH₃S + O₂ reaction to TS5 as having no E_a ; but being at the energy of the reactants. The preexponential factor is calculated from the TS structure to be 1.2E+12 at 300 K and 1.5E+13 at 2000 K. Dissociation of *anti*-CH₃SOO back to CH₃S + O₂ has an E_a of 9.2 kcal/mol with an A factor of 2.2E+13 at 300 K.

All other rate constants for the individual, elementary reactions are determined from the above thermochemical parameters using canonical transition state theory.¹¹ The results are fit through a temperature range of 300–2000 K and expressed in the form of a three-parameter Arrhenius expression $(A \times T^n \times \exp(E_a(\text{kcal mol}^{-1})/RT))$ and are listed in Table 4.

3.5. Calculated Rate Constants and Comparison with Literature. The elementary rate constants listed in Table 4 are used as input to the multichannel, quantum RRK calculations for k(E) with master equation calculations¹¹ for pressure dependence to estimate rate constants as a function of temperature and pressure. The bath gas is He. The Lennard-Jones

parameters of 5.6 Å and 650 K are used. The ΔE down is 1000 calories and accounts for collisions with oxygen; an energy bin of 100 calories is used. Rate constant data are shown and explained in the series of figures and tables below for the chemical activation reaction.

Figure 2 illustrates the log of the rate constant for formation of stabilized adduct CH₃SOO (combined *anti-* and *syn-*) vs temperature and pressure. The well depth of this adduct relative to reactants is very shallow, only 9.7 kcal/mol, and this weakly bound adduct dissociates rapidly back to the reactants CH₃S + O_2 . The discussion below indicates that the adduct is formed rapidly, but it does not mean that the resulting concentration is high nor that is a highly stable final product.

The three lower energy product channels are $CH_2S + HO_2$, $CH_3 + SO_2$, and $CH_3SO + O$. The graphs of rate constants for these channels are also plotted in Figures 2 and 3. These channels show less pressure dependence than the adduct formation; but the rate constants of these three product channels increase with temperature.

CH₂S + HO₂ comes from several paths, the most important is molecular elimination of HO₂ from the CH₃SOO adduct via TS6. This barrier is 12.5 kcal/mol at 298 K, only ~3 kcal/mol higher than the dissociation reaction of CH₃SOO back to CH₃S + O₂. The CH₂S + HO₂ product set also results from a bimolecular abstraction of a hydrogen atom from CH₃S by O₂; this channel contributes only up to 0.3% (at 2000 K). The least important path to CH₂S + HO₂ is the elimination path from C.H₂SOOH which contributes 0.02% (at 2000 K).

All of the $CH_3 + SO_2$ product set comes from the CH_3SOO adduct isomerization through TS2' to the CH_3SO_2 intermediate. The barrier of this isomerization is 17.8 kcal/mol, 5.3 kcal/mol higher than the competing HO_2 elimination channel, and it also has a tight transition state. The formation of $CH_2S + HO_2$

TABLE 4: Input Parameters for CH₃S + O₂ System for the Chemical Activation/QRRK-Master Equation Analysis^{ef}

no.	reactions	$A_{\infty}{}^a$	п	$E_{\mathrm{a}}{}^{b}$	$\langle v \rangle^c$
1	$CH_3S + O_2 \rightarrow CH_2S + HO_2$	3.33E+3	2.93	24.6	
5	$CH_3S + O_2 \rightarrow anti-CH_3SOO$	3.27E+8	1.35	0	398.3 (×7.623), 1611.2 (×3.893),
-5	anti-CH ₃ SOO \rightarrow CH ₃ S + O ₂	5.21E+14	-0.352	9.2	3349.6 (×2.484)
21	anti-CH ₃ SOO \rightarrow syn-CH ₃ SOO	4.10E+11	0.098	0.07	
-21	syn -CH ₃ SOO \rightarrow anti-CH ₃ SOO	4.63E+11	0.123	0.68	391.3 (×7.377), 1484.4 (×3.619),
2	syn -CH ₃ SOO \rightarrow CH ₃ SO ₂	3.07E+12	1.677	17.9	3068.3 (×3.004)
16	syn -CH ₃ SOO \rightarrow C.H ₂ SOOH	3.49E+7	1.40	37.9	
6	syn -CH ₃ SOO \rightarrow CH ₂ S + HO ₂	1.92E+8	1.21	12.1	
17	syn -CH ₃ SOO \rightarrow CH ₃ SO + O	6.07E+8	1.51	24.3	
-2	$CH_3SO_2 \rightarrow syn-CH_3SOO$	7.08E+11	0.606	92.0	347.1 (×5.138), 1183.1 (×6.306),
10	$CH_3SO_2 \rightarrow C.H_2SO_2H$	9.12E+8	1.31	52.3	3137.1 (×3.056)
3	$CH_3SO_2 \rightarrow CH_3OSO$	1.20E+11	0.751	46.3	
9	$CH_3SO_2 \rightarrow CH_3 + SO_2$	2.16E+12	0.575	14.8	
-10	$C.H_2SO_2H \rightarrow CH_3SO_2$	1.25E+10	0.579	26.8	348.6 (×7.350), 1038.7 (×4.013),
13	$C.H_2SO_2H \rightarrow CH_2(OH)S^{\bullet}=O$	6.24E+11	0.338	25.0	3407.0 (×2.637)
11	$C.H_2SO_2H \rightarrow CH_2SO + OH$	1.91E+11	0.348	27.1	
-13	$CH_2(OH)S = O \rightarrow C.H_2SO_2H$	1.02E+11	0.689	50.9	321.2 (×4.323), 990.2 (×7.489),
14	$CH_2(OH)S = O \rightarrow CH_2SO + OH$	4.77E+10	0.790	53.0	3503.2 (×2.188)
15	$CH_2(OH)S = \rightarrow cyc-(COS) = O + H$	6.48E+7	1.52	73.9	
-3	$CH_3OSO \rightarrow CH_3SO_2$	2.46E+8	1.25	47.2	341.4 (×4.411), 1211.6 (×6.742),
22^d	$CH_3OSO \rightarrow CH_3O + SO$	4.0E+8	0	57.3	3092.1 (×2.847)
4	$CH_3OSO \rightarrow CH_3 + SO_2$	2.92E+11	0.815	30.5	
19	$CH_3OSO \rightarrow CH_2O + SOH$	2.89E+7	1.403	48.4	
20	$CH_3OSO \rightarrow CH_2O + HSO$	2.44E+6	1.816	53.0	
-16	$C^{\bullet}H_2SOOH \rightarrow syn-CH_3SOO$	4.33E+10	0.181	35.5	375.2 (×7.533), 544.1 (×3.516),
7	$C^{\bullet}H_2SOOH \rightarrow CH_2SO + OH$	6.37E+11	0.087	0	3507.7 (×2.451)
18	$C^{\bullet}H_2SOOH \rightarrow cyc-COS + OH$	9.91E+12	-0.180	32.3	
8	$C^{\bullet}H_2SOOH \rightarrow CH_2S + HO_2$	3.67E+11	0.482	13.7	

^{*a*} A in unit of cm⁻³ mol s. ^{*b*} E_a in kcal/mol. ^{*c*} Reduced frequency sets, frequency (degeneracy), from CPFIT,²⁰ in cm⁻¹. ^{*d*} Via k_{-22} and microscopic reversibility (MR); $A_{-22} = 5.0E7$ and $E_{a-22} = 0$ from estimation. ^{*e*} Lennard-Jones parameters are 5.6 Å and 650 K from ref 23. ^{*f*} All rate constants (except k_{22}) are calculated using canonical transition state theory (TST) with TS calculated at CBS-QB3, G3MP2, or G2 levels of theory. Please see discussion in text.

Figure 2. CH₃SOO (*anti-* and *syn-*) and CH₃SO + O formation rate constant (log k) vs temperature and pressure.

dominates $CH_3 + SO_2$ over all temperature (300–2000 K) and pressure (10⁻⁵ to 100 atm) ranges, as illustrated in Figure 3. The difference between these two paths narrows with increased temperature, the ratio of these two rate constants is 5000 at 300 K and decreases to 4 at 2000 K.

The formation of $CH_3SO + O$ shows little pressure dependence but a strong temperature dependence. The comparison in Table 5 shows that this channel has the highest barrier among the three important new products, however it also has the largest *A* factor of these three paths. It becomes more important at high temperatures, as one would expect.

Figure 3. Two product sets formation rate constant $(\log k)$ vs temperature and pressure.

The total forward rate constant as a function of pressure and temperature is shown in Figure 4. The total forward rate constant is 6.9×10^{11} cm⁻³/(mol·s) at 300 K and 1 atm, and the dominant species are the two forms of CH₃SOO. The rate constants for the formation of CH₂S + HO₂, CH₃ + SO₂, and CH₃SO + O are 6.4×10^{6} , 4.6×10^{7} , and 4.9×10^{-3} cm⁻³/(mol·s), respectively, at 300 K and 1 atm.

The calculated rate constants as a function of pressure from QRRK-master equation analysis for the important channels are listed in Table 6.

 TABLE 5:
 Calculated Elementary (High-Pressure Limit) Rate Constants for Selected Products

	syn -CH ₃ SOO \rightarrow TS2'	syn -CH ₃ SOO \rightarrow TS6	<i>syn</i> -CH ₃ SOO → TS17
product	$CH_3 + SO_2^{a}$	$CH_2S + HO_2$	$CH_3SO + O$
$E_{a,f}$ (kcal/mol)			
av of 300–2000 K	17.5	12.8	25.4
$A_{\rm f}({\rm s}^{-1})$			
300 K	5.47E+11	3.89E+11	6.54E+12
400 K	5.99E+11	3.86E+11	8.96E+12
500 K	6.60E+11	4.26E+11	1.19E+13
600 K	7.28E+11	4.95E+11	1.55E+13
800 K	8.84E+11	7.04E+11	2.41E+13
1000 K	1.05E+12	9.93E+11	3.46E+13
1200 K	1.23E+12	1.34E+12	4.64E+13
1500 K	1.47E+12	1.93E+12	6.62E+13
2000 K	1.84E+12	3.04E+12	1.04E + 14

^{*a*} Through adduct $CH_3SO_2^*$: $CH_3SOO \rightarrow CH_3SO_2^* \rightarrow CH_3 + SO_2$.

Figure 4. Total forward rate constant (log k) vs temperature and pressure.

The available experimental results, primarily from the review article by Tyndall and Ravishankara⁶ are listed in Table 7. The most recent experiment by Turnipseed, Barone, and Ravishankara reports the rate constant of CH₃S + O₂ \rightarrow CH₃SOO to be (7–18) × 10⁻¹⁴ cm⁻³/(molecule·s), which converts to 4.2 × 10¹⁰ to 1.1 × 10¹¹ in cm³/(mol·s) (units of this study) at 216 and 258 K respectively, and 60–80 Torr of He. Our results estimate the the rate constant of CH₃S + O₂ \rightarrow CH₃SOO at 237 K and 0.1 atm at 3.2 × 10¹⁰ cm³/(mol·s), which close to the lower end of the experimental value.

A small elementary reaction mechanism, for the low temperature early time reactions, is constructed in Table 8. All reactions except R14 are reversible with reverse rate constants calculated from the thermochemical parameters and principles of microscopic reversibility. R3 to R13 in Table 8 of this mechanism are the results of the QRRK-master equation analysis on the $CH_3S + O_2$ system at pressure of 0.1 atm, with only the noted important channels included. We further include a number of reactions in this mechanism relating to reactions of initial products in the experiment of Turnipseed et al.² We start the reaction with an initial concentration of CH₃S radical from the data of the experiment, at time zero. As the initial source of CH₃S is CH₃SCH₃ we also add an equal quantity of CH₃ radical. Two CH₃S radicals can combine to dimethyl disulfide without a barrier. R1 and R2 are included in this model to account for these association reactions. The loss of CH₃S radical due to diffusion at the reported rate constant of the experiment is

FABLE 6:	Calculated	Rate	Constants	(200 - 2000)) K)	for
Products vs	Pressure					

			E_{a}	
			(kcal/	pressure
reactions	Α	N	mol)	(atm)
$CH_3S + O_2 \rightarrow anti-CH_3SOO$	1.83E+37	-11.0	5.2	1E-5
5 2 5	1.83E+38	-11.0	5.2	1E-4
	1.84E+39	-11.0	5.2	1E-3
	1.91E+40	-11.0	5.2	1E-2
	2.64E+41	-11.1	5.3	0.1
	9.51E+42	-11.2	5.8	1
	4.54E+44	-11.4	6.8	10
	2.22E+45	-11.3	7.6	100
$CH_3S + O_2 \rightarrow syn-CH_3SOO$	2.78E+37	-11.1	5.2	1E-5
	2.79E+38	-11.1	5.2	1E - 4
	2.80E+39	-11.1	5.2	1E-3
	2.91E + 40	-11.1	5.2	1E-2
	3.99E+41	-11.1	5.4	0.1
	1.39E+43	-11.3	5.9	1
	7.00E + 44	-11.5	6.8	10
	1.98E+46	-11.6	7.9	100
$CH_3S + O_2 \rightarrow CH_2S + HO_2$	4.71E+24	-4.7	8.3	1E-5
	4.71E+24	-4.7	8.3	1E-4
	4.71E+24	-4.7	8.3	1E-3
	4.71E+24	-4.7	8.3	1E-2
	4.74E + 24	-4.7	8.3	0.1
	5.25E + 24	-4.7	8.3	1
	2.25E+25	-4.9	8.7	10
	1.54E+27	-5.4	10.0	100
$CH_3S + O_2 \rightarrow CH_3SO + O$	5.25E+13	-1.5	16.9	IE-5
	5.25E+13	-1.5	16.9	1E-4
	5.25E+13	-1.5	16.9	IE-3
	5.25E+13	-1.5	16.9	1E-2
	5.24E+13	-1.5	16.9	0.1
	5.19E+13	-1.5	16.9	1
	$4.66E \pm 13$	-1.5	16.8	10
CUS I O SCU I SO	$2.49E \pm 13$	-1.4	10.7	100
$CH_3S + O_2 \rightarrow CH_3 + SO_2$	$9.44E \pm 25$	-3.8	12.5	1E-3
	$9.44E \pm 25$	-3.8	12.5	1E-4
	$9.44E \pm 23$ 0.45E ± 25	-3.8	12.5	1E-3 1E-2
	9.43E⊤23 0.47E⊥25	-3.8 _2.9	12.3	$1E^{-2}$
	9.47E + 23 $0.77E \pm 25$	_3.0	12.3	1
	1.11E + 23 1.14E + 26	-3.0	12.3	10
	7.31E+27	-4.4	13.2	100
	1.212121		10.4	100

included and assumed irreversible (R14). The methyl radicals from photochemical dissociation of the dimethyl sulfide (in the experiment) are active in this O₂ rich environment and the reactions R15 and R22–24 are amended. The barrierless radical-radical associations of CH₃S with CH₃SOO and CH₃OO form energized adducts (CH₃SOOCH₃* or CH₃SOOSCH₃*) with up to 70 kcal/mol excess energy and these energized adducts undergo exothermic dissociation of the weak peroxide bonds to oxy radicals, reactions R17 to R21. As an example:

 TABLE 7: Literature Data on CH₃S + O₂ Reaction System^a

k (cm ³ /(molecule s))	experimental method	ref
2E-13	product study	Hatakayama and Akimoto ²⁴
3E-17	product study	Grosjean ²⁵
>1.5E-16	product study	Balla and Heicklen ²⁶
<2E-17	LP/LIF	Balla et al. ⁴
<2E-16	LP/LIF	Black and Jusinski ²⁷
<2E-18	LP/LIF	Tyndall and Ravishankara ³
(7-18)E-14	LP/LIF, CH ₃ SOO	Turnipseed et al. ²
5.4E-14	computational chem	this study

^{*a*} Conditions: ~ 0.1 atm and room temperature to 200 K.

TABLE 8: Kinetic Model for	\cdot CH ₃ S	$S + O_2$ System ((0.1 atm, 200	-2000 K)
----------------------------	---------------------------	--------------------	---------------	----------

reactions	A^a	n	$E_{a}{}^{b}$	ref
$CH_3SCH_3 \rightarrow CH_3 + CH_3S(R1)$	4.89E+37	-7.05	78.14	С
$CH_3SSCH_2 \rightarrow 2CH_3S(R2)$	7.10E+39	-7.75	70.33	d
$CH_3S + O_2 \rightarrow anti-CH_3SOO (R3)$	2.64E+41	-11.07	5.29	е
$CH_3S + O_2 \rightarrow syn-CH_3SOO (R4)$	3.99E+41	-11.13	5.36	е
$CH_3S + O_2 \rightarrow CH_2S + HO_2 (R5)$	4.74E+24	-4.67	8.29	е
$CH_3S + O_2 \rightarrow CH_3SO + O (R6)$	5.24E+13	-1.50	16.85	е
$CH_3S + O_2 \rightarrow CH_3SO_2 (R7)$	3.44E+12	-5.94	14.14	е
$CH_3S + O_2 \rightarrow CH_3 + SO_2 (R8)$	9.47E+25	-3.80	12.33	е
anti-CH ₃ SOO \rightarrow syn-CH ₃ SOO (R9)	2.49E+46	-10.06	80.48	е
syn -CH ₃ SOO \rightarrow CH ₂ S + HO ₂ (R10)	7.86E+44	-10.86	79.95	е
syn -CH ₃ SOO \rightarrow CH ₃ SO + O (R11)	2.80E+44	-10.55	79.95	е
syn -CH ₃ SOO \rightarrow CH ₃ SO ₂ (R12)	4.67E+48	-10.40	79.95	е
$CH_3SO_2 \rightarrow CH_3 + SO_2 (R13)$	2.31E+00	3.39	9.58	е
$CH_3S \rightarrow CH_3S(INV)$ (irreversible) (R14)	120	0	0	f
$CH_3 + O_2 \rightarrow CH_3OO (R15)$	1.2E+12	0	0	g
$CH_3S + CH_3OO \rightarrow CH_3SO + CH_3O (R16)$	1.0E+13	0	0	g
$CH_3S + anti-CH_3SOO \rightarrow 2CH_3SO (R17)$	2.5E+12	0	0	g
$CH_3S + syn-CH_3SOO \rightarrow 2CH_3SO (R18)$	2.5E+12	0	0	g
$anti-CH_3SOO + anti-CH_3SOO \rightarrow 2CH_3SO + O_2$ (R19)	3.4E+10	0	-1.5	h
anti-CH ₃ SOO + syn-CH ₃ SOO \rightarrow 2CH ₃ SO + O ₂ (R20)	3.4E+10	0	-1.5	h
syn -CH ₃ SOO + syn -CH ₃ SOO \rightarrow 2CH ₃ SO + O ₂ (R21)	3.4E+10	0	-1.5	h
$CH_3 + CH_3 \rightarrow C_2H_6 (R22)$	4.31E+33	-6.65	4.64	i
$CH_3 + CH_3OO \rightarrow 2CH_3O (R23)$	1.0E+13	0	0	g
$CH_3OO + CH_3OO \rightarrow 2CH_3O + O_2 (R24)$	5.5E+10	0	-0.42	h

^{*a*} A in unit of cm⁻³, mol, and s. ^{*b*} E_a in kcal/mol. ^{*c*} High-pressure limit *k* is estimated as A = 2E+16, $E_a = 73.3$, and then used as inputs of QRRK-master equation analysis. The results are shown here. ^{*d*} High-pressure limit *k* is estimated as A = 2E+16, $E_a = 65.0$, and then used as inputs of QRRK-master equation analysis. The results are shown here. ^{*e*} From QRRK-master equation analysis, input are in Table 4. ^{*f*} CH₃S (INV) is the invisible CH₃S: the loss of CH₃S is due to diffusion.² ^{*g*} Estimations. ^{*h*} Reference 28. ^{*i*} High-pressure limit *k* is estimated as A = 3E13, $E_a = 0$, and then used as inputs of QRRK-master equation analysis, the results are shown here.

CH₃S + CH₃SOO ↔ CH₃SOOSCH₃* ↔ 2 CH₃SO,
$$\Delta H_{rxn} = -90 \text{ kcal/mol}$$

(We note an additional exothermicty results from rearrangement of the two CH_3S-O^{\bullet} radicals to the more stable electronic form $CH_3S^{\bullet}(=O)$).

If the energy is partitioned equally in the two CH₃SO products, then each CH₃SO will have sufficient chemical activation energy (ΔH_{rxn}) to dissociate to H₂O + HC[•]=S or CH₂S + OH before collisional stabilization occurs. (Barriers for these last two reactions are not included in the thermochemical estimate).

The CHEMKIN II mechanism integrator is used to model the three reaction conditions of Turnipseed et al.² where O_2 concentrations are 1.29E+16, 3.48E+16, or 4.6E+16 molecules/ cm³. The temperature is 216 K and the pressure is 80 Torr of He as used in their experiment. The profiles of CH₃S radical from our mechanism are compared with the experiments in Figure 5. Our mechanism overestimates the loss of CH₃S radicals at all three [O₂] conditions, since our overall CH₃S + O₂ well depth is lower, 9.7 vs 11.2. We feel this result is acceptable for this initial quantum RRK chemical activation analysis and will move to RRKM analysis for improved accuracy. The product profiles from the Chemkin run are shown in Figure 6 for conditions of 216K and 0.1 atm of He, with $[O_2] = 1.3 \times 10^{16}$ molecules/cm⁻³. The major species in the system are CH₃OO and CH₃SOO. CH₃SOO starts to dominate CH₃S radical after 1 ms. The CH₃SOO concentration is 10 times higher than dimethyl disulfide before 1 ms, 100 times higher than CH₃SO, and about 4 orders of magnitude higher than CH₂S + HO₂, which is the most important unimolecular (forward) reaction from the CH₃SOO adduct.

4. Summary

Thermochemistry, kinetic parameters, and a potential energy surface for the $CH_3S^{\bullet} + O_2$ reaction system are studied using density functional, ab initio, and composite methods in computational chemistry. The analysis extends into thermochemistry and potential surfaces for the $CH_3 + SO_2$ and $CH_2=S=O +$ OH association reactions and unimolecular dissociation of CH_3SO_2 , and CH_3OSO . Kinetics of the $CH_3S^{\bullet} + O_2$ system are analyzed in detail and compared with experimental studies from the literature.

The well depth for the $CH_3S^{\bullet} + {}^{3}O_2$ reaction to CH_3SOO^{\bullet} adduct is very shallow at 9.7 kcal/mol. Three exit channels from the CH_3SOO^{\bullet} adduct to $CH_2S + HO_2$, $CH_3 + SO_2$, and $CH_3SO + O$ are found to have low reaction barriers; but all of these

Figure 5. Comparison of model with the experiment data for the decay of CH₃S radical at 216 K and 80 Torr of He.

Figure 6. Major species at 216 K and 80 Torr of He, $[O_2] = 1.29E+16$ molecules/cm⁻³.

barriers are slightly higher than reverse reaction of CH₃SOO to CH₃S[•] + O₂. All transition states in this weakly bound CH₃S – OO system including adduct formation/dissociation are tight, on a comparative basis. Rate constants to these channels are estimated at conditions of temperatures and pressure. The CH₃SOO adduct primarily dissociates back to reactants CH₃S[•] + O₂, with fractions of both the chemically activated CH₃SOO* and stabilized CH₃SOO adducts reacting to products over barriers that are several kcal/mol higher than reaction back to reactants. Rate constants and thermochemistry of the CH₃SOO adduct and transition states are in reasonable agreement with the experimental data in the literature. The G3MP2 and CBS-QB3 composite methods are recommended for sulfur – oxygen hydrocarbon systems and show significantly better agreement with literature than the density functional methods used in this study.

Acknowledgment. We acknowledge the funding from the U.S. Army Research Office, Funding Number W911NF0410120, and we thank Dr. Chad Sheng for help in the SMCPS and Rotator computer codes used to calculate the entropy and heat capacity properties and the Thermkin code for the kinetic parameters.

Supporting Information Available: Plots of internal reaction coordinates (IRC), which are important for verifying reaction paths and are included in the SM for reactions TS2' through TS5 and TS7 through TS21. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G. Nature 1987, 326, 655.

(2) Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. J. Phys. Chem. 1992, 96, 7502.

(3) Tyndall, G. S.; Ravishankara, A. R. J. Phys. Chem. 1989, 93, 2426.
(4) Balla, R. J.; Nelson, H. H.; McDonald, J. R. Chem. Phys. 1986, 109, 101.

(5) Barnes, I.; Bastian, V.; Becker, K. H.; Niki, H. Chem. Phys. Lett. 1987, 140, 451.

(6) Tyndall, G. S.; Ravishankara, A. R. Int. J. Chem. Kinet. 1991, 23, 483.

(7) Butkovskaya, N. I.; Barnes, I. NATO Sci. Ser. 4, Earth Environ. Sci. 2002, 16, 147.

(8) Frank, A. J.; Turecek, F. J. Phys. Chem. A 1999, 103, 5348.

(9) Yin, F.; Grosjean, D.; Seinfeld, J. H. J. Atmos. Chem. 1990, 11, 309.

(10) Zhu, L.; Bozzelli, J. W. J. Mol. Struct. (THEOCHEM) 2005, 728, 147.

(11) Sheng, C. Ph.D. Dissertation. Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 2002.

(12) Lay, T. H.; Krasnoperov, L. N.; Venanzi, C. A.; Bozzelli, J. W. J. Phys. Chem. **1996**, 100, 8240.

(13) Shokhirev, N. V. University of Arizona, Tempe, Arizona, http:// www.chem.arizona.edu/faculty/walk/nikolai/programs.html#programs.

(14) Zhu, L.; Bozzelli, J. W. Chem. Phys. Lett. 2002, 357, 65.

(15) Kee, R. J.; Rupley, F. M.; Miller, J. A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics; reprint ed.; Sandia National Lab.: Livermore, CA, 1992.

(16) Wang, S. K.; Zhang, Q. Z.; Cao, C. B.; Gu, Y. S. Acta Chim. Sinica **2002**, 60, 432.

(17) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed. (NSRDS–NBS 37); U. S. Government Printing Office: Washington, DC, 1970.

(18) Sander, S. P.; Friedl, R. R.; Ravishankara, A. R.; Golden, D. M.; Kolb, C. E.; Kurylo, M. J.; Huie, R. E.; Orkin, V. L.; Molina, M. J.; Moortgat, G. K.; Finlayson-Pitts, B. J. *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies*; Evaluation Number 14, JPL Publication 02-25; JPL: Pasadena, CA, Feb. 1, 2003; can be downloaded from http://jpldataeval.jpl.nasa.gov/download.html.

(19) Ritter, E. R.; Bozzelli, J. W. Int. J. Chem. Kinet. 1991, 23, 767.
(20) (a) Bozzelli, J. W.; Ritter, E.; Dean, A. M. Int. J. Chem. Kinet.

1997, *29*, 161. (b) Ritter, E. R. *J. Chem. Info. Comput. Sci.* **1991**, *31*, 400. (21) da Silva, G. R.; Bozzelli, J. W. Thermodynamic and ab initio

analysis of the controversial enthalpy of formation of formaldehyde.*ChemPhysChem.* 2006, 7, 1119.(22) Jin, Fei.; Master Thesis. Department of Chemistry and Environ-

(23) Reid, R. C.; Prausnitz, J. M.; Polling, B. E. Properties of Gases

and Liquids; 4th ed.; McGraw-Hill: New York, 1989.

(24) Hatakeyama, S.; Akimoto J. Phys. Chem. 1983, 87, 2387.

(25) Grosjean, D. Environ. Sci. Technol. 1984, 18, 460.

(26) Balla, R. J.; Heicklen, J. J. Photochem. 1985, 29, 297.

(27) Black, G.; Jusinski, L. E. J. Chem. Soc., Faraday Trans. 2: 1986, 82, 2143.

(28) Rosado-Reyes, C. M.; Francisco, J. S.; Szente, J. J.; Maricq, M. M.; Østergaard, L. F. J. Phys. Chem. A 2005, 109, 10940.